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Weak lattice constants and the virial expansion for a 
classical gas? 

H H Chen 
Institute of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China 

Received 26 May 1983 

Abstract. A new derivation of the virial expansion of the equation of state for a classical 
gas is given. We first show some properties of weak lattice constants. By using these 
properties the ordinary virial expansion for a classical gas is obtained. A method to calculate 
finite size corrections to the virial coefficients is discussed. 

1. Introduction 

The concept of graph embeddings (or lattice constants) plays an important role in the 
series expansion methods in statistical mechanics. Well known examples are series 
expansions of thermodynamic quantities of various spin systems on different lattices 
(Domb 1960, 1974). In the derivation of these series a major part of the work is the 
counting of lattice constants of graphs (up to a certain number of lines or points) on 
a regular lattice of infinite size. The set of weak lattice constants of connected graphs 
on other connected graphs (of finite size), called T-matrix by Rushbrooke (1964), 
plays a central role in the finite cluster method of series expansions originally suggested 
by, Domb (1960). Due to this method the calculation of high-temperature series 
expansion is greatly simplified. 

Another well known type of series expansions in statistical mechanics is the virial 
expansion of the properties of a gas (Uhlenbeck and Ford 1962). In this expansion a 
thermodynamic quantity, such as the pressure P, of a gas is expressed in powers of 
the density p (= V / N ) ,  

where the coefficients B, are sums of integrals which are represented by linear graphs. 
Only sfars of m points contribute to Bm in the thermodynamic limit. Contributions 
from separated graphs and articulated graphs cancel exactly with high-order terms of 
the integrals. 

There have been many different treatments of the virial expansions (Mayer and 
Mayer 1940, Uhlenbeck and Ford 1962, Stell 1964, Domb 1974, Wortis 1974, 
Aldrovandi and Monte Lima 1980). In the cluster expansion for a gas the number of 
terms which have the same integral represented by a linear graph is equal to the weak 
lattice constant of the graph on the complete graph of N points. Therefore the 
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properties of weak lattice constants should be able to play important roles in the virial 
expansion of the equation of state for a gas. Previous studies, however, did not make 
explicit use of the properties of weak lattice constants. The purpose of this paper is 
to give a new derivation of ( 1 )  by using properties of weak lattice constants. Further- 
more, previous derivations used the formalism of grand canonical ensemble. In the 
present work only the canonical partition function is involved. 

In the thermodynamic limit N + CC, the shape and the size effects can be neglected. 
The coefficients B, in (1) depend only on the temperature T. For finite N the virial 
coefficients depend on the size N and the shape of the system as well. Finite size 
corrections to the coefficients B, can be obtained in the present approach. 

In 9 2 graph terminology will be described briefly. We follow the terminology of 
Domb (1974) closely. Some properties concerning the weak lattice constants of 
coloured graphs are developed. In B 3 the virial expansion, equation ( l ) ,  will be derived 
by using theorems obtained in § 2 .  It is shown how the contributions from separated 
graphs and articulated graphs are eliminated in the limit N + m .  A prescription to 
determine the size dependence of B, is described in § 4. A discussion is also given in 
this section. 

2. Graph terminology and properties of weak lattice constants 

A graph g is a collection of p points with 1 lines connecting certain pairs of points. A 
graph of p points is complete, denoted Kp, if all the p ( p - 1 ) / 2  pairs of points are 
connected by lines. Two graphs are isomorphic if there is a one-to-one correspondence 
such that points and their connections correspond. A graph is said to be connected if 
there is at least one path between any two points; otherwise it is disconnected. A 
connected graph consists of a number n of connected components. An articulation 
point (or cut point) is a point whose deletion increases the number of components. 
A connected graph with an articulation point is called an articulated graph; otherwise 
it is called a star. The cyclomatic number C ( g )  of the graph g is the number of 
independent cycles in the graph. For a graph with n components 

C ( g ) = I - p + n .  ( 2 )  

For many applications it is important to regard the points of the graphs as being 
distinguishable. There are p !  different labellings of the points, but because of symmetry, 
groups of different labellings have identical connections. Among the p !  labelled graphs, 
there are only v different kinds of labelled graphs. The number of different permuta- 
tions of the points which leave the connections invariant is called the symmetry number 
of the graph. The symmetry number of a graph g, denoted S(g), is an important 
quantity in the virial expansion. It is easy to see that S ( g )  = p ! / v .  

A graph is a subgraph of G when all points and lines of the graph are also points 
and lines of G. Any subgraph of a graph G which is isomorphic with g is said to 
represent a weak embedding of g on G. Different kinds of embeddings can be defined 
(Sykes et af 1966, Wortis 1974, Chen and Lee 1980). Only the weak embedding will 
be considered in this paper. The number of different weak embeddings of a graph g 
on the host graph G is called the weak lattice constant of g on G, and is usually 
denoted as (g; G). It is sometimes abbreviated as ( g )  if G is not specified, and g is 
given pictorially. To avoid confusion we will use the notation w ( g ;  G) instead of 
(g; G) in this paper. From a more realistic point of view w ( g ;  G) is the number of 
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different ways of drawing a graph g (more precisely, a graph isomorphic with g )  out 
of the host graph G. 

If g'p '  is a graph of p points, and G is the complete graph of p points, it follows 
from the definition of symmetry number that 

w(g'P'; K p )  = p ! / S ( g ' P ' ) .  (3)  

It is straightforward to show that if the host graph is the complete graph of N points 
( N  P )  

w ( g ' P ' ;  K N )  = N ! / [ ( N - p ) ! S ( g ' P ' ) ] .  (4) 

So far we have assumed that all lines of the graphs are of the same species and 
each pair of points is connected by at most one line. In what follows the lines of a 
graph are allowed to belong to different species (conveniently represented by different 
types or colours of lines). A graph having different species of lines is said to be 
coloured; otherwise it is uncoloured (or monochromatic). A coloured graph will be 
denoted c,, or g,,, if it is obtained by colouring the uncoloured graph gi, where the 
second index represents different colourings. A graph with pairs of points connected 
by different numbers of lines can be considered as a coloured graph. When we allow 
the colours in g , ,  to become the same, all g,,, reduce to the uncoloured graph g,. 

When a graph is coloured some of its symmetric properties may disappear. There- 
fore coloured graphs gi., have symmetry numbers equal to or less than that of the 
uncoloured graph g,, S ( g , , , )  S S ( g , ) .  For a coloured graph gl.n we define the weak 
lattice constant w(g,,,; G) as the number of different ways of drawing a coloured graph 
out of the uncoloured host graph G, such that this coloured graph is isomorphic (both 
the connections and the colours are significant) with si,,. It is clear that 

w(gi,a; G) = w ( g i ;  G ) S ( g i ) / S ( g i , e ) .  ( 5 )  

Consider two coloured (or monochromatic) graphs c,, and c,,. If we combine c,, 
and c,, together, i.e. allow points in cXI to coincide with points in c,~,, different coloured 
graphs are obtained. Coloured graphs obtained by combining c,, and c,, together are 
called combined graphs of c,, and cX2. Figure 1 shows an example of the combination 
of two graphs. Eight different combined graphs can be obtained. On the other hand, 
a graph can be decomposed into several graphs by cutting the points. 

If the colours appearing in cXI do not appear in c,,, we define a function w of cXl 
and c,, as 

A.,' ',A' A' 
d 9  9 -4  ? 

A:' - A,' A? A0 
b v  ? I 

P 
d/ A,? A? 

- 9  

Figure 1. When the two graphs on the LHS are combined, eight different combined graphs 
are obtained. 
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where the summation goes over all combined graphs, ci, of c,, and c,,. We have the 
following theorem. 

Theorem 1A. For any graphs c,, and cx,, if the colours of lines appearing in cX1 do not 
appear in c,,, then the function w(c,,, c,,; G) defined by (6) satisfies the product 
property 

w(c , , ,  c,,; G) = w(c , , ;  G)w(c,,; G). (7) 

Proof. Since the two graphs cXI and c,, have different colours, any combined graph 
can be decomposed into c,, and c,, in a unique way (i.e. we know that each line of 
the combined graph is either from c,, or from c,,). Therefore the total number of 
different ways to draw the combined graphs of c,, and cxz out of the graph G is the 
same as the number of ways to draw a graph c,, out of G, and then a graph c,, 
(independent of how c,, is drawn) out of G. This proves theorem 1A. 

It is important to note that if there is no restriction on the colours of lines in c,, 
and cx2, a combined graph ci may have several different ways of being decomposed 
into c,, and c,,. For example if the broken and dotted lines in figure 1 were indistinguish- 
able, then the combined graph shown in figure 2 would have two different ways to be 
decomposed into cXI and c,,. If the number of different ways to decompose c, into c,, 
and c,, is denoted by d ( c , ) ,  then theorem 1A should be modified as follows. 

t\ A,. '\A , b  '\\A,:' - , ' 9 '  1 ' .  

Figure 2. If the broken and dotted lines were indistinguishable, the graph on the LHS 
would have two different ways to be decomposed into c,, and cx2. 

Theorem 1B. For any graphs cXI and c,,, if we define 

where the summation goes over all combined graphs of c,, and c,,, and d ( c i )  is the 
number of different ways to decompose the combined graph ci into c,, and c,,, then 

w(c , , ,  cx2; G) = w ( c , , ;  G)w(c,,; G). (9) 

Theorem 1A is a special case of theorem 1B. For the purpose of deriving the virial 
expansion theorem 1A is more appropriate. Another special case of theorem 1B has 
been given by Sykes et a1 (1966, theorem 11) in which all lines in c,, and c,, have the 
same colour. 

It is straightforward to extend theorem 1B to the combination of several graphs. 

where the summation is over all combined graphs, ci, of the n graphs, and d (  ci) is the 
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number of different ways to decompose ci into the n graphs, then 

~ ( c , , , c ~ ~ , . . . , c ~ , ; G ) =  ~ ( c , , ;  G)w(c, , ;G) . . .  w(cXn; GI. (11) 

The proof of theorem 2 is a straightforward extension of the case n = 2 (theorem 
1B). We note that if any colour appearing in one graph does not appear in other 
graphs, then d(c , )  = 1. Only this special case will be considered in the derivation of 
the virial expansion. 

For a set of n graphs there are many different ways to combine the graphs. 
Associated with each combination a product of the w-functions can be constructed. 
For example, for a set of three graphs c,, c, and ck, we can combine all of them to get 
w( c,, c,, ck); we can combine two of them to construct w( c,, c,) w (  ck), w( c,, ck) w( c,) 
or w(c,, ck)w(c,); or we can combine none of them to have w(c,)w(c,)w(ck). Here 
we have dropped the host graph G in w(c; G )  for convenience. Any of the above 
quantities will be called a combination of w(c,), w(c,) and w(ck). We note that the 
notation w(C,) stands for a graph integral in Domb (1974), and the notation w(c,) 
here is a weak lattice constant. 

A combination which is a product of m factors of the w-functions will be called 
an mth-order combination (or mth-order term), and will be denoted by 
W:", (c,,, cx2, . . .), with the index a representing different combinations of the same 
order. For instance 

etc. It must be noted that the permutation of two w-functions, or the permutation of 
graphs in a w-function, does not generate a new combination. Although all the different 
combinations have different functional forms, they have exactly the same value for a 
given set of graphs, as a consequence of theorem 2. 

In order to derive the virial expansion, equation ( l ) ,  we prove the following theorem. 

Theorem 3. For a set of n different graphs c,,, cx2,. . . , cxm, 

2 2 ( - l ) m - 1 ( m - l ) !  W:mqC,,,CX2'.. . , c , , )=O,  
m=l  a 

where the summations go over all different combinations WLmm,. The n graphs are 
different either in colour or in structure. 

Proof. It is convenient to classify the combinations of n graphs (and the associated 
w-functions) by the partitions of n. Consider a partition 1"12"23"1. . . , which satisfies 

in, = n, n , = O , l , 2  , . . . ,  (15) 

and 

1 n, = m. 
1 

This partition represents the group of combinations that n,  graphs are not combined 
with others, 2n2 graphs are combined in pairs, and 3n3 graphs are combined in triples, 
etc. 
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Since all graphs are different, the number of different combinations of the n graphs 
represented by the partition 1fl12"23f13.. . is n![nl!(l!)"ln2! (2!)"2. . .I-'. As all combina- 
tions W:" are equal, the proof of theorem 3 is reduced to the proof of the identity 

(-l)m-l(m - I)!  n !  c = 0 ,  
n1!(1!)nln2!(2!)f12.. . 

of n 

where the summation is over all partitions 1f112f123f13. . 
given by (1 6). 

Consider a function 

f ( x )  = ~ n ( l + a ~ x + a ~ x ~ + a ~ n ~ + .  . .). 

If we make use of the expansion 

I ~ ( I + X ) = X - ~ X ~ + ~ X ~ - .  . . , 

f(x) can be rewritten as 

f ( x ) = b l x + b 2 x 2 + b 3 x 3 + .  . . 
where the coefficients 6, are given by 

( - l ) m - l  m! 
b , =  - (a1 1 "I (4 "2 

partition m nl !  n2! . . . 
of n 

Let a, = ( n ! ) - ' ;  the left-hand side (LHS) of (17) is equal to n !  b,. But when a, = ( n ! ) - ' ,  
f( x )  = In ex = x. All coefficients b, vanish except b, = 1. This proves equation (1 7) and 13( 

hence theorem 3. 

3. Vinal expansion of a classical gas 

Consider a system of N monatomic molecules contained in a volume V. The inter- 
molecular potential between two molecules, U(rii), depends only on the distance rjj 
between the particles i and j .  The Hamiltonian is given by 

With this Hamiltonian, the partition function of the system is 

ON( V,  T )  = ( N !  h3N)-1 exp(-H/k,T) d"p d3Nr I 
where A = h/(27rmkBT)1'2 is the mean thermal wavelength of the particles, the product 
is over all pairs of molecules, and 

f,. = exp[- U (  rii)/ kBT] - 1. (24) 
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Following the standard graphic expansion method (Mayer and Mayer 1940), we 
expand the integrand in ascending powers of the function fll, 

In this expansion, with each line representing a factor f,, a term containing 1 factors 
of fij can be represented by a labelled 1-line graph. Different terms represented by 
isomorphic graphs will have the same contribution to QN. The number of different 
labelled graphs which are isomorphic with a graph g is nothing but the weak lattice 
constant of the graph g on the complete graph of N points, w(g; K N ) .  Therefore 

where the summation is over all unlabelled graphs g and the product is over all lines 
(labelled arbitrarily) of the graph g. 

All graphs in (26) are N-point graphs. They consist of connected components: 
isolated points, single lines, triangles, etc. For a graph of n components the integral 
of the graph is then a product of n integrals, one for each component of the graph. 
An isolated point will give a factor V. A line will contribute a factor 

11 f, d3r, d3r, = V f i ,  d3rj 3 V .  I( 1 ). 
Similarly a triangle will give 

Graph integrals I (g )  for other components (connected graphs) can be defined in 
the same way. For a connected graph of 1 lines and p points, the integrand is a product 
of 1 factors flj and the integration is over the coordinates of p -  1 particles. We have 
assumed that the system is translationally invariant (either N + CO, or a periodic 
boundary condition is assumed). An arbitrary particle of the graph is fixed at the 
origin when we integrate over the coordinates of the other p -  1 particles. Finally the 
integration over the coordinates of the 'fixed' particle gives the factor V as in (27) 
and (28). 

For an articulated graph g, if the graph is decomposed into g, and g, when cut at 
the articulation point, then 

I (g )  = l(ga)l(gti). (29) 

The proof of (29) is simple. We fix the position of the articulation point and integrate 
nfi, over the coordinates of the other points. The integration over the coordinates 
of points in ga is independent of the integration over the coordinates of points in g,. 
Equation (29) follows. For a disconnected graph g consisting of the numbers n, of 
connected graphs g,, i = 1, 2 , .  . . , we can define its graph integral as 

I (g)  = n [I(gJI",. (30) 
I 

All graph integrals arC independent of V. 
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In what follows all points not connected by a line will be deleted from the graphs. 
Instead of considering all graphs to have N points (as in (26)), the graphs will have 
different numbers of points. The smallest component of the graphs is then a line. 
When the isolated points are omitted, a graph of p points and n components will 
contribute a term of order VN-(p-n) to the partition function. If g j  is the graph 
resulting from deleting all isolated points of an N-point graph gj”, it follows from the 
definition of weak embeddings that 

w(gi” ; KN) = w ( g , ;  KN) .  (31) 

Equation (26) is then rewritten as 

where the summation is over all graphs g (having no isolated points), and p and n are 
respectively the numbers of points and components of g. Qo = V N / ( N !  A 3 N )  is the 
partition function of the ideal classical gas of N molecules. In (32) the V-dependent 
part V-(p-n), the N-dependent part w ( g ;  K N )  and the U-dependent part I ( g )  are 
separated. 

Taking the logarithm of QN, we have 

In & = I n  Q o + X - i X 2 + i X 3 - .  . . , (33) 

where X is defined in (32). Consider a general term in X”. The U-dependent part 
is a product of m factors of I ( g ) .  Each factor can further be decomposed into a product 
of graph integrals of stars Z(s ) ,  through (29) and (30). If there are a number n1 of 
stars sl, a number n, of stars s2, etc, when the m graphs are decomposed into stars 
(by cutting at all cut points), then the product of the m factors of I ( g )  can be expressed 
as 

n I ( g )  = [I(sl)lnlrI(s2)ln2 . * . . (34) 
8 

Next consider the V-dependent part of this term. The power of V, according to 
(2), is equal to 

where p ( g )  and n ( g )  are respectively the numbers of points and components of the 
graph g. When the m graphs are decomposed into stars there are the numbers n, of 
stars sI, and f ( s , )  and c(s,) are the number of lines and the cyclomatic number of s,. 
We note that when a graph is decomposed into stars by cutting at the cut points, the 
total number of lines and the total number of cycles are unchanged. 

Equations (34) and (35) imply that any two terms in In QN, if they have the same 
U-dependent part, will have the same V-dependent part. The N-dependent parts, 
however, are different in general. When all terms having the same volume part (and 
hence the potential part) are grouped together, equation (33) becomes 

I (  SI ) I n # >  (36) I (  s, )+ C (  s, 1 In QN = In oo+c c c . . . G , , f l , , f l , ,  n r v- 
n~ ”2 n3 I 

where each term is characterised by a set of non-negative integers n,, n2, n3, .  . . . The 
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coefficients C,,,,,,, depend only on N and are equal to 

where Xis) sums over all sets of graphs which contain the numbers m, of graphs g, 
such that when all graphs are decomposed into stars there are the numbers n, of stars 
s,. Here m = X i  m,. The factor (-l)"-'/m is the coefficient of X" in (33), and the 
factor m ! / ( m , !  m,! . . .) is the number of different permutations of the m graphs in X". 

The pressure is then obtained from P =  d(k ,T  In QN)/aV,  

where the summation goes over all sets of non-negative integers { n }  = (n l ,  n 2 , .  . .), and 

y { n ) = C  n,[l(s,)-c(s,)I=C n I [ p ( s l ) -  11, (39) 

Z{nl = n [I(Sl)l"I.  (40) 

I I 

I 

Although the coefficients C,,,,,,, as given by (37) are nonlinear functions of w(g,), 
they can be rewritten as a linear combination of weak lattice constants of connected 
graphs. 

Consider the combinations Wk"' (c,,, c x 2 , .  . . , cxn)  for a set of n stars. n ,  of them 
are stars sl, n2 of them are stars s2, etc. All stars are monochromatic, but all of them 
have different colours. In the combinations Wh"' some combined graphs will have 
new cycles besides the original cycles of the n stars. For illustration consider three 
stars; two of them are s, and si (single lines with different colours) and one of them 
is s2 (a triangle). Equation (14) for the three stars is shown in figure 3. In this figure 
w(g) is abbreviated as (g).  The first term is 3! W ' 3 ' / 3 = 2 w ( s I ) w ( s ~ ) w ( s 2 ) .  The next 
three terms are the expansions of -2!  W ~ * ' / 2 = - w ( s l ,  s i ) w ( s 2 ) ;  and the following 
six terms are -w(s , ,  s2)w(s;)- w(s;, s2)w(sI). Finally the other terms are the 
expansions of W")  = w(sI, si, s,). The underlined terms are those having at least one 
new cycle. 

We have the following theorem. 

Theorem 4. Consider a set of n graphs, cXI, c,,,. . . , cxn. n ,  of the graphs are stars s,, 
n2 of them are stars s2,  etc. Each graph is monochromatic, but all graphs haye different 
colours. For this set of graphs the sum of terms on the LHS of (14) which do not have 
a new cycle (see figure 3 for illustration) is equal to C,,,,,,,, . times n,! n2! . . . . 

Proof. Consider an mth-order term in C,,l,n,,.... It has the form 

where g ,  are uncoloured. Among the m graphs, m, of them are g,, m2 of them are 
g,, etc. When all the m graphs are decomposed into stars there are the numbers ni 
of uncoloured stars s,. If we colour out these stars on g ,  according to the colours of 
graphs cxI, c ,~ , .  . . , cxm, we can obtain a set of terms on the LHS of (14). On the other 
hand, if we allow all colours to be the same, a set of terms on the LHS of (14) will 
reduce to w(g,,) w(gy2) . . . w(gy,zJ. This set of terms obviously does not include those 
having new cycles. Summing up this set of terms, and expressing weak lattice constants 
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+(A)  + ( A )  ..... = o  

Figure 3. The explicit form of (14) for a set of three stars (two single lines and one triangle, 
see first term). Thc terms having new cycles in the graphs are underlined. 

of coloured graphs in terms of weak lattice constants of uncoloured graphs (by ( 5 ) ) ,  
we obtain 

( - l )m- ’ (m - l)! wig,,) w(g,,) . . . w(g,,,,) X (the number of different ways to 

colour out c,,, cX2, . . . , cxn from the set of graphs g,,, gy2, . . . , gy , , , ) ,  

Since the colours among the stars s, can be exchanged, the colours among the stars 
s2 can be exchanged,, . . , there are n,! n,! n3! . . . possible permutations of colours. 
Among these different colourings, some of them are simply permutations of the order 
of the coloured graphs of g,,, gy2,. . . , gy,,,, The number of different permutations of 
the order of graphs resulting from the permutations of the colours is m,! m,! m3! . . . . 
As the order of w ( g )  is insignificant, the total number of different colourings is equal 
to (n , !  n,! . . . ) / ( m , !  m,! . . .). Therefore, the ratio of the two quantities considered 
above is n,! n,! . . . . This ratio is the same for each term in C,,.,,,,,, and the corresponding 
quantity on the LHS of (14). Theorem 4 follows. 

We note that if some of the graphs c,,, c,,, . . . are not stars, theorem 4 does not 
hold because the method to degompose g ,  into c,, is not unique. 

Now consider terms on the LHS of (14) which have new cycles in the graphs. A 
pair of points connected by two lines is considered as a cycle (see figure 3 for illustration). 
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The highest-order terms with new cycles are of order n-1,  and have the form 
w ( c {  ) w ( c ; ) .  . . w(c;-,). As all possible combinations of the w-functions are included 
in (14), associated with each ( n -  1)th-order term, there is a first-order term w ( c ;  U 

c; U . . . U C L - , ) .  Here c ;  U ck U . . . U c ; - ~  is a graph whose points and lines are 
respectively the collections of points and lines of cl,, c;, . . . and CL-,.  The term 
w ( c ; ) w ( c ; ) ,  . . w(cL-,) (with coefficient (-1)n-2(n-2)!) cancels with w ( c ;  U c; U 

, . . U c;-,  ) when we apply theorem 3 again to the set of n - 1 graphs. 
Each time we apply theorem 3, all possible combinations are included with proper 

coefficients. We then apply theorem 3 to a set of n -2  graphs to cancel an ( n -  
2)th-order term and w ( g )  for a disconnected graph of n - 2 components. Repeating 
this process, all nonlinear terms in w ( g ) ,  and w ( g )  for disconnected graphs, cancel 
out. What are left are linear terms in w ( g )  for connected graphs with new cycles. 

A combined graph, which is connected and has new cycles besides the cycles of 
the constituent stars, has the number of points 

~ < C n , [ ~ ( s , ) - c ( s , ) I + l =  y{nI+l ,  (41) 
I 

since the combined graph g has n = 1, 1 = X I  n,l( s,) and c ( g )  > E, n,c( s,). This proves 
the following theorem. 

Theorem 5. If n ,  + n2+. . . > 1, the coefficients C,,,,,.... in (36) can be expressed as 
linear combinations of weak lattice constants w ( g )  of connected graphs having p < y{n}.  

In all cases we have considered, C,,,,,,,,. come out to be linear combinations of 
weak lattice constants of stars only. But, we cannot give a general proof that weak 
lattice constants of articulated graphs vanish. 

In theorems 4 and 5 the host graph G is not specified in the weak lattice constants 
w ( g ;  G). These theorems are true for any G. In the virial expansion for a gas G is 
the complete graph of N points. 

From equation (4) and theorem 5 we see that if n,  + n 2 + .  . . > 1, C,,,,,,.,, are of 
order N { y }  or lower. These terms do not contribute to (38) in the limit N +  CO. Terms 
contributing to (37) are those with n ,  + n2 +. . . = 1, i.e. terms represented by stars in 
X (equation (32)). Therefore, in the thermodynamic limit (38) becomes 

where the summation is over all stars s,, and pI is the number of points of s,. I (  s,) and 
S(s,) are respectively the graph integral and the symmetry number of s,. Equation 
(42) has the same form as (11, and 

Bm=-C ( m - 1 ) I  ( s Lm) ) / s ( s‘,“ ’ ) , 
0 

where the summation goes over all m-point stars s;”. 

4. Discussion and conclusions 

(43) 

In this paper we have rederived the virial expansion of the equation of state for a 
classical gas. This derivation is based completely on the properties of weak lattice 
constants of coloured graphs. We have shown how the contributions of separated 
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graphs, articulated graphs and the nonlinear terms ( X 2 ,  X 3 , .  . . of (33)) cancel exactly 
in the thermodynamic limit N + 00. 

For finite N, the equation of state is given by (38). To calculate the coefficient of 
pm,  we find all sets of stars such that for each set the number of stars n and the total 
number of points p satisfies p + n  = m +  1. For example, the sixth coefficient is con- 
tributed from the following sets of stars: (d6)), (d5), d2)), (d4), d3)), (d4) 9 d2) 9 s  (2) ), 
( s ( ~ ) ,  d3), d2)), (d3),  s ( ~ )  9 9  s ( ~ )  s ' ~ ) )  and (d2), s(~), s ( ~ ) ,  s(~), s ( ~ ) ) ,  where s ( ~ )  stands for 
a star of p points. 

For each set of stars the U-dependent part of the coefficient is simply I ' I i I ( s i ) ,  and 
the size dependent part C,,,,,,,,. is given by (37). We can calculate the coefficients 
C,,,,,,... as functions of N directly from (37) by setting w(g) = N ! / [ ( N - p ) !  S(g)], or 
we can express C,,,,,,.,, as linear combinations of weak lattice constants of connected 
graphs (theorem 5) before inserting equation (4) for w(g). 

We have calculated the N dependence of the coefficients B,(N) for the hard-sphere 
gas. They are 

B2(N)/B2(0O) = 1 -N- l ,  

B,(N)/B,(m) = 1 +0.2N-' - 1.2Iv-2, 

B4(N)/B4(m) = 1 -0.337N-I + 7.95W2-  8 . 6 1 K 3 ,  

B s ( N ) / B ~ ( ~ )  = 1 +(0.035*0.03)N-'-(32.7*0.2)N-2+(155* l)W3 

- (124 * l ) W 4 ,  

B 6 ( N ) /  Bf,(a3) = 1 + (0.07 f 0.35)N-' + (103 * 5 ) N - 2  - (1480 f 3 0 ) K 3  

+ (41 10 * 60)N-4- (2730*40)N-', 

where B,(m) are known from Ree and Hoover (1967), and the uncertainties in 
B,(N) and & ( N )  are due to the uncertainties in the Monte Carlo calculation of 
B5(m)[=(0.1 103*0.0003)B~(m)]  and B6(~)[=(0.0386*0.0004)B:(m)]. We see 
that for N21O2 the deviations of B m ( N )  from Bm(m) are about 0.3-1%, and for 
N > lo3 the deviations are negligible. 

In conclusion, we have developed some properties of the weak lattice constants of 
coloured graphs, and have shown a new derivation of the virial expansion for a classical 
gas. This derivation is straightforward and is simple if one is familiar with graph 
embeddings. The N dependence of the virial coefficients also follows from the new 
approach. 
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